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ABSTRACT

This paper describes a method for integrating audio anavdis-
plays to explore the activity of neurons in the brain. Theivaot
tion is twofold: to help understand how populations of nesree-
spond during cognitive tasks and in turn explore how sigfrala

the brain might be used to create musical sounds. Experahent
data was drawn from electrophysiological recordings ofviia

ual neurons in awake behaving monkeys, and an interface evas d
signed to allow the user to step through a visual task as sgen b
the monkey along with concurrent sonification and visuéitiza

of activity from a population of recorded neurons. Data friovo
experimental paradigms illustrating different functibpeoperties

of neurons in the prefrontal cortex during attention andsies-
making tasks are presented. The current system provides-an a
cessible way to learn about how neural activity underliemdove
functions and serves as a preliminary framework to explath b
analytical and aesthetic dimensions of audiovisual remtasions

of the data.

1. INTRODUCTION

Our brains are able to manage a great deal of informatiom fro
taking in sensory perceptions to forming decisions andsftam-
ing plans to actions. Current research explores how thishieaed
by a network of billions of interconnected neurons, comroati
ing through electrical impulses calledtion potentials, or spikes.
The activity of single neurons can be recorded through eldes
placed in the brain while subjects (in this case rhesus mesiq
perform experimental tasks designed to examine specifini€og
tive functions. Neural responses are often very diverse varen
trying to understand how a population of neurons might work t
gether, simply averaging across all neurons results in s dbs
information, while plotting the raw responses of all newa@an
quickly become difficult to interpret. Sonification offers@ample-
mentary way to explore the data and in a literal sense tidsgely
with the idea of listening to a dynamic conversation among- ne
rons during cognitive tasks.

The idea of listening to the brain has been explored at beth th
macroscopic and microscopic levels. Electrical signatemted
from the scalp (electroencephalogram, or EEG) have long bee
studied as a representation of aggregate neural populatitn
ity. Sonification of EEG signals has been applied in a varagty
contexts: for scientific understandingj,[as a potential diagnostic
tool for detecting abnormal brain rhythms in epileptic pats ],
and as auditory feedback for human computer interactioticaep
tions [3]. Previous work has also explored sonification of neurons
isolated in culture4, 5].

For recordings from individual neurons in awake behaving
subjects, audification of neural spike trains during datiecton

Figure 1: Schematic system diagram.

has long been used as a tool for navigating through diffexezds
of the brain. Duringin vivo single electrode experiments, elec-
trophysiologists often listen to an amplified voltage sigmbile
lowering the electrode into the brain in order to estimagiland
cortical area as well as identify neurons. Once a neuronois is
lated, listening to its spike train, which sounds like aesgnf pops
and clicks, provides a fast and convenient way to gauge xime
ple, how strongly a neuron responds to a particular visiralstis

in real time. The ability to listen to the neural activity Whivi-
sually paying attention to the stimulus on the screen esatle
experimenter to constantly monitor both. Beyond a few nesiro
it becomes difficult to hear nuances within the populatictivéyg.

In the current study we concurrently sonify and visualizevitg
from a population of neurons along with a schematic of the be-
havioral task being performed both to try and provide aniting
way to identify patterns in the data and to explore differgays in
which signals from the brain can be used to create musicaldsou

2. SYSTEM

The current implementation provides a way to explore dater af
it has been collected. The system enables the user to loadlneu
spike trains and trial information and then listen to andialize
the data as it relates to a behavioral task (B)g. The user can
interactively play through entire experimental trials orgpns of
trials while being presented with a constantly updatingesttic

of the task performed by the monkeys as well as the elicitedahe
responses.

2.1. Data

In a typical neurophysiological experiment, an animalasrted to
repeatedly perform many trials of a carefully controllesktao that
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multiple instances of neural responses to a particularrexpe- data as well as a sound engine that handles the synthesiaraf so
tal condition can be analyzed. Three representations afwlate parameters mapped from the data. Networked communicagitn s
explored: single trials, condition averages, and condlitiverage from the data engine to the sound engine allows for a separati

differences. Single trials consist of spike times for eaelron the extraction of data parameters for sonification from ttteia
with millisecond precision, whereas condition averaggsasent mapping of data to sound.
the smoothed instantaneous spike rate averaged acrogslentuit Initial preprocessing of the data, which included sortihg t

als of the same experimental condition for each neuron. ager  neurons, creating matrices of spike times, and computiiady tr
differences summarize the difference in spike rate between averaged instantaneous spike rates, was done in MATLAB and

conditions for each neuron across time. The user can losedetift output as text files. Images of the behavioral task, averatie- a

combinations of single trials, average trials, or averaferénce ity plots, and labels were generated and saved as .raw inlage fi

trials for a particular task. The interface was developed in C++ and uses OpenGL / GLUT for
the graphical display. Timing of the playback is controllezing

2.2. Interface RtAudio [6] such that every time a specified number of samples

has passed, the appropriate sound parameters are calcatate
The data are visualized as rasters, which are labeled ackesta  then sent via Open Sound Control (OS@)tb a sound engine. In
as blocks on the left side of the screen. Example screenah®ts  the current implementation, a ChucRB] [script runs concurrently
shown in Fig.3 and5. Within a raster, each row represents one and handles synthesis. For each OSC message received, ChuckK
neuron’s response across time. For individual trials, depsesent plays a single note with the specified instrument and frequen
a spike at that particular time, whereas for the average #fed-d  pue to the constraints of pitch, the sonified output is shredcin
ence plots, spike rate is indicated by the color of the hegi.ma time compared to the actual timing of the data such that th#iso
The average spike rate across all neurons over time for @atdrr  cation is slowed by a minimum factor of 10.
is shown below the raster blocks and highlighted for theemirr
raster.

As a vertical bar moves across time for a given trial, the task
screen on the right updates with a schematic of the stimhlais t
the monkey is viewing at that particular time in the trialr Bngle
trial rasters, the dots representing spikes are dynamiealarged
for the current time. The user can click anywhere on any raste
change the current time and use computer keyboard shottcuts
change certain parameters of the sound, such as the datand so
mapping, musical scale, speed of playback, and data integra
time. To change the instrumentation, the user can manuzsélyge
properties of the sound engine.

3. RESULTS

Data from two separate experiments were used to explore bhow a
diovisual displays of neural data might aid in understagdiow
behavior correlates with neural activity and in achieviiftedent
musical aesthetics. Within the context of the two experita@ne-
sented, the three different data to sound mappings higtdigfer-

ent aspects of the main effects in the data.

On single trials and average trials, thagRatePitch mapping
reflects the average envelope of activity across all neusoch
that sharp onsets and offsets of overall neural activitgtersalient
rising and falling of pitch. The amount of sustained neuciva
ity present across a certain span of time can be estimateheby t

Out of the large space of possible data to sound mappingse thr absolute pitch played, but since there is a steady stringtefsn
were implemented for the current system, ternaegRatePitch, the relative intensity of activity as compared to baselisgeér-
neuronPitch, andeachRatePitch. TheavgRatePitch mapping pro-  haps less apparent. The constant tempo, single string e nerd
vides the most basic summary of average population agctivity temporally smoothed profile create a steady melody thatsig tea
where a range of spike rates is mapped to a range of pitchas suc follow.

that higher spike rates correspond to higher pitches. Theage On the other hand, theeuronPitch mapping for single trials
firing rate across all neurons is sampled every specified puofb  reflects the amount of participation from the populationeidimons
samples, and the corresponding note is played, creatingaayst ~ Since spikes from each neuron have a unique and indeperegent r
stream of single notes. This mapping can be used both folesing resentation (a note played at each spike). While it is nosiptes

2.3. Datato sound mappings

trials and condition averaged trials. For teronPitch mapping, to simultaneously track the activity of all individual neus at all
which applies to single trials, each neuron is assigned queni  Points in time, a sparse sound corresponds to low neuralitycti
pitch, and a note is played at that pitch each time the neypites while a dense concentration of notes reflects the simultanao-

If specified, the neurons can be split into two sets, each isefts tivation of multiple neurons. A persistent sounding of martar
own instrument. TheachRatePitch mapping focuses on the av-  notes indicates the elevated activity of specific neuror. tifis
erage spike rate of each neuron over time. Neurons are gtoupe Mapping, there is no rhythmic structure imposed on the saund
into 2-4 groups, and each group is assigned an instrumetdr Af This leads to sporadic bursts of sound triggered by eveatsitive
specified number of samples, every fifth neuron within eachygr ~ the activity of the neurons. Since the neurons are repredeat

is selected, and a pitch corresponding to its spike rateaigegpl, independent notes, this mapping showcases the complebdy-o
again with higher spike rates corresponding to higher piicfhe ~ tivity in the population on a millisecond by millisecond mand
neurons within each group are continuously cycled at eveny-s ~ Creates a more chaotic sound.

pled time interval. For average and difference trials, teschRatePitch mapping
provides a blend of average rate and individual neuroninébion
since the discrete sampling of individual neuron spikesrati¢hin
each assigned group means that a changing subset of nearons i
A software system was designed consisting of a data engate th every group is represented at a given time. The regular sagnf
handles loading, processing, and graphical display ofraxeatal activity imposes a steady rhythm on the notes, and the assign

2.4. Implementation
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Figure 2: Attention task experiment setup. A. Behaviorakta
Each monkey was trained to direct attention to a periphecaiéd
location in order to detect a localized change across twhdkaef
a stimulus array. B. Stimulus alignment. The FEF response fie
(RF) for each recording site was determined by applying osicr
timulation during a simple fixation task and mapping the ek
saccades. An example set of eye traces from microstimalatio
evoked saccades are shown. The array of gratings was peslitio
such that one grating was centered at the average evokeadsacc
endpoint. C. Trials in which the monkey was cued to attend to
the response field are labeled "Cue RF,” whereas trials irchvhi
the monkey was cued to attend to the opposite array locat®n a
labeled "Cue away.”

of instruments to each group can make the activity of somepgo
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LA

Figure 3: Example screenshot using data from the atterdi t

4.1. Spatial attention task

In order to study neural mechanisms underlying visual &tien
monkeys were trained to direct and sustain attention atiphpal
location without the use of eye movements (F2y[9]. During
each trial, the monkey maintains fixation at the center oftiieen
and uses a lever to indicate whether one grating embeddedgamo
five distractors changes orientation across two flashes. afiadp
cue is given early in the trial, and in order to correctly dethe
grating change, the monkey needs to direct attention toubd c

of neurons sound more prominent than others. In this mapping location. All six locations are equally likely to be cued datte

the same number of notes plays at every fixed interval, c@ati
structured and continuously flowing progression of chords.

Additionally, the playback speed affects the granulariithw
which changes in activity across time can be perceived ih tha
slower speeds highlight local changes while higher speenisde
more of an overview of single trial dynamics. The choice stio-
ments and musical scale also directly affect the overathaéis of
the sound.

4. EXAMPLES

The following two experiments explore the different resgmn
properties of neurons in an area of the brain involved in mulamn
and executing eye movements. Our eyes are constantly iegeiv
sensory input, and visual attention plays a crucial roleaw ke

cue is always valid.

Single electrode recordings were made in the frontal eye fiel
(FEF), which is an oculomotor area known to play a role in con-
trolling eye movements. The FEF contains a spectrum of Visua
to (eye) movement responsive cells, which form a map of Visua
space. For a given neuron, the particular region of spadeittha
represents is called its response field (RF). The RF's oViddal
neurons are found by electrically stimulating at the recwydite,
which causes the monkeys to make a stereotyped eye movement
(saccade) towards a particular area of visual space. Thpamm
ison of interest is the neural responses when the monkey is at
tending to the RF of the recorded neurons vs. when the monkey
is attending elsewhere. Within this task, individual nexwrshow
vastly different response profiles even though the monkeg dot
make any eye movements. As a population, the spike ratessd th
neurons encode whether the monkey is paying attention to-a pa
ticular area in visual space throughout the duration of ¢aah

Fig. 3 shows an example screenshot with two single trials,

experience the world. Even though it may seem like we can seetwo condition averages, and one average difference plopaom

everything around us, only a limited amount of informatisrac-
tually selected for detailed processing. Since we have itjfeebt
visual acuity at the center of gaze, our eyes are constacdly-s
ning to bring different visual information into focus. Wencalso
attend to peripheral locations while keeping our eyes fik@tex-
ample while driving and keeping an eye on the road but cotigtan
monitoring the surroundings. A working model for how theibra
might resolve these different means of selecting visuakinftion
centers on shared neural mechanisms underlying both theoton
of eye movements and the voluntary allocation of attention.

ing neural responses when the monkey is cued to attend the RF v
cued to attend away. Neurons from independent recordings we
combined into example trials and aligned so that their REd@r
cated at what is schematically diagrammed as the lowerdefiec
of the screen. The trials span four seconds. Vertical limethe
rasters indicate different epochs of the trial, and shadmgingle
trials marks the periods during which a visual stimulus pthan
the fixation spot is presented.The neurons are sorted satkhh
more visually responsive neurons are at the top of eachrraste

The corresponding video capture, which demonstrates the
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Figure 4. Sensory-guided decision and eye movement task- Mo

keys were trained to make perceptual judgments about thagee

motion of a moving dot pattern and then generate an eye maweme

towards a corresponding target.

three different data to sound mappings, can be viewed at

the link given at the end of the discussion sectioA feature that

creased activity in response to visual stimuli presentetthénre-
sponse field. Furthermore, the neurons sustain an enhaeaeld |
of activity when the monkey is attending to the RF locatiorrev
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stands out both in the rasters and the sonified output is the in Figure 5: Example screenshot using data from the sensodggu

decision and eye movement task.

when the screen is blank without a visual stimulus to drive th
cells. During the presentation of the gratings, the neuiss
show enhanced visual responses to the grating in the RF when a
tended vs. not attended even though the visual stimulus isetime

in both conditions. At the end of each trial, the level of rearc-
tivity quickly falls off.

two directions of motion presented are placed at the top ofi ea
raster.

The greater the motion coherence of dots, the more in-
formation is available to the monkey (and neurons) for de-
ciding on and planning the upcoming eye movement, and
this is apparent in both the rasters and sonifed output (see

4.2. Sensory-guided decision and eye movement task

A separate experiment explored the role of neurons from aasim
area of the brain during a task that involved perceptualfjueiys

and planning of eye movements (F4[10]. In this task, the mon-
key is shown two targets in the periphery, and a random malng

thelink at the end of the discussion sectitor the corresponding
video capture). In the average spike rate trials, activitjids

up during the dot presentation period as the monkey decides o
T1 (in or near the RFs of the neurons on the left side of the task
schematic screen) and prepares to move its eyes there. iIGelyye
activity becomes suppressed as the monkey decides on Tg (awa
from the neurons’ RFs). The diverging response profiles are f

pattern appears in the center of the screen for 800 ms. The monther jllustrated in the difference plots. The neurons shaviier

key must determine the direction of motion of the dots andrlat

and stronger difference signals when the monkey is predevith

report its decision in the form of an eye movement to one of the jncreasing motion signals.

two targets. On different trials, the strength of the motsignal

towards one target or the other is varied from 0 to 40%. Onee th

fixation spot turns off, the monkey can move its eyes to theseho
target. Neurons were recorded from prearcuate cortex,iareg
the brain near (and potentially overlapping with) the FESf)g an
electrode array.

5. DISCUSSION

The current system provides a preliminary framework forl@xp
ing both data analysis and the creation of biologically irexp

Fig. 5 shows two average spike rate responses when the mon-musical elements using an integrated audio and visualfauter
key is shown a 40% coherence dot pattern and chooses tamget onln the examples provided, the visual display of data rasieds

(left) vs. target two (right). Although the RFs of individuaeu-
rons were not determined prior to the experiment, the neugen-
erally respond more strongly to what is schematically dgiagned
as the left side of visual space. The average spike ratesate
followed by three average difference rasters, showing tieeage
spike rate when the monkey chooses target two (on the right) s

tracted from the average spike rate when the monkey choases t
get one (on the left) for 0%, 10%, and 40% motion coherence

trials. Each trial shown is event-aligned and spans tworsi#so
where the first half is centered around the 800 ms presentatio
moving dots, and the last half is centered around the timéef t
saccade. Trials are grouped according to the motion signesigth
and the monkey’s target choice. The neurons are sorted Hpmot
selectivity during the presentation of the moving dots stiwit
neurons that show the strongest difference in activity betwthe

rate traces in isolation already effectively convey spikerig and
spike rate information. The addition of sonified output ardiya
namically updating task schematic changes the user'saictien
with the data such that instead of viewing a static imageptes
can step through an experimental trial. While the aim is eaes-
sarily to discover information in the auditory displaystthannot
be perceived in the visualizations, the system providesigaging
and accessible means to explore neural data and extractdine m
effects in each experiment. The sonified output enhancesaned
plements the visualization, providing a multi-sensory nseaf ex-
periencing and exploring the data.

To date, three types of data to sound mappings have been im-

plemented, and in each case the mapping has been to musital pi
In order to ensure a relatively constant level of musicalsoen
nance, the pitch mappings were scaled to highly consonéstt pi
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collections such as the pentatonic scale. Scaling andffidi@itch
mappings, while maintaining a pleasing sonic environmientts
the resolution of the sonified data. Future work will explomv
other auditory dimensions such as timbre, spatial locatiorthm,
and volume may provide alternative expressive represensabf
neural activity. Exploration of the space of possible magpi
could be directed towards extracting information from tlagadn
an intuitively perceptible manner or towards purely aestigoals.

One challenge in sonifying and visualizing neural data ffer i
formation content is balancing the tradeoff between actelyraep-
resenting the raw signal and producing a meaningful inggpion
of the information contained within the signal. The amouft o
information contained in a single spike, for example, ramaan
open question, but as observers we may not be able to easily di
cern the magnitude of its impact in the context of brain dyicam
Spike rates provide a good estimate of the relative actieityl at a
given point in time but do not take into account the possible of
temporal patterns in the data. Other potential parametexstiact
from the data could include measures of synchrony, triairiay
variability, or correlations between neurons. The evolutif neu-
ral population activity over the course of individual tsatould
also be transformed into dimensionality-reduced trajgctepre-
sentations and sonified to highlight behavior of the netwasla
whole.

Within each experiment, the network is loosely defined since
current technology allows experimenters to sample onlyaetiof
neurons, and it is not necessarily straightforward to deitez the
number of neurons sufficient to represent the populatiomtirgp
neurons based on properties of the individual neurons (asiefir
sual responsiveness, as used above) imposes particukiraiots
that may or may not be explicitly utilized in the brain but twbu
help the user in functionally grouping the neurons when irngw
and listening to the activity of the population.

Furthermore, brain dynamics on a single trial are rapid and
complex in comparison to our ability to perceive and procgss
sual and auditory signals. Depending on the goal of the iiser,
may be ideal to observe each detail or quickly gauge the heura
population response. The ability to listen to neural pojofedata
in realtime would potentially be useful during the courseaaf
experiment to monitor neural activity on a trial-by-triadis and
evaluate the quality of the data as it is being collected. Aamo
interactive interface would also allow the user to choosa tia
sound mappings best suited to feature different aspecteafata.

Sonification and visualization offer tools to relate the\aigt
of neural populations to cognitive tasks by decoding nesigadals
into features that can be grasped perceptually. As dathsetene
increasingly complex with more neurons and more simultasigo
recorded brain areas, new methods for extracting infoondtom
the high-dimensional data may play an instrumental roleoim-c
veying insights about how the brain works to neuroscientstd
non-neuroscientists alike.

Video captures of the examples described above are awilabl
online at:https://ccrma.stanford.edu/~mindyc/sovnd/demo/
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